The Organometallic Reader

Dedicated to the teaching and learning of modern organometallic chemistry.

Posts Tagged ‘microscopic reversibility

Let’s Get Together: Associative Ligand Substitution

with one comment

Despite the sanctity of the 18-electron rule to many students of organometallic chemistry, a wide variety of stable complexes possess fewer than 18 total electrons at the metal center. Perhaps the most famous examples of these complexes are 14- and 16-electron complexes of group 10 metals involved in cross-coupling reactions. Ligand substitution in complexes of this class typically occurs via an associative mechanism, involving approach of the incoming ligand to the complex before departure of the leaving group. If we keep this principle in mind, it seems easy enough to predict when ligand substitution is likely to be associative. But how can we spot an associative mechanism in experimental data, and what are some of the consequences of this mechanism?

The prototypical mechanism of associative ligand substitution.

The prototypical mechanism of associative ligand substitution. The first step is rate-determining.

A typical mechanism for associative ligand substitution is shown above. It should be noted that square pyramidal geometry is also possible for the intermediate, but is less common. Let’s begin with the kinetics of the reaction. Read the rest of this entry »

The trans/cis Effects & Influences

with 2 comments

The trans effect is an ancient but venerable observation. First noted by Chernyaev in 1926, the trans effect and its conceptual siblings (the trans influence, cis influence, and cis effect) are easy enough to comprehend. That is, it’s simple enough to know what they are. To understand why they are, on the other hand, is much more difficult. I call ideas like this—which, by the way, pop up often in organometallic chemistry—”icebergs.” Their definitions are simple and easy to see; their explanations can be complex.

Definitions & Examples

Let’s begin with definitions: what is the trans effect? There’s some confusion on this point, so we need to be careful. The trans effect proper, which is often called the kinetic trans effect, refers to the observation that certain ligands increase the rate of ligand substitution when positioned trans to the departing ligand. The key word in that last sentence is “rate”—the trans effect proper is a kinetic effect. The trans influence refers to the impact of a ligand on the length of the bond trans to it in the ground state of a complex. The key phrase there is “ground state”—this is a thermodynamic effect, so it’s sometimes called the thermodynamic trans effect. Adding to the insanity, cis effects and cis influences have also been observed. Evidently, ligands may also influence the kinetics or thermodynamics of their cis neighbors. All of these phenomena are independent of the metal center, but do depend profoundly on the geometry of the metal (more on that shortly).

Kinetic trans and cis effects are shown in the figure below. In both cases, we see that X1 exhibits a stronger effect than X2. The geometries shown are those for which each effect is most commonly observed. The metals and oxidation states shown are prototypical.

The kinetic trans and cis effects in action. X1 is the stronger (trans/cis)-effect ligand in these examples.

The kinetic trans and cis effects in action. X1 is the stronger (trans/cis)-effect ligand in these examples.

Read the rest of this entry »

Epic Ligand Survey: Metal Alkyls (Part 3)

leave a comment »

In this last post on alkyl ligands, we’ll explore the major modes of reactivity of metal alkyls. We’ve discussed β-hydride elimination in detail, but other fates of metal alkyls include reductive elimination, transmetallation, and  migratory insertion into the M–C bond. In a similar manner to our studies of other ligands, we’d like to relate the steric and electronic properties of the metal alkyl complex to its propensity to undergo these reactions. This kind of thinking is particularly important when we’re interested in controlling the relative rates and/or extents of two different, competing reaction pathways.

Reactions of Metal Alkyl Complexes

Recall that β-hydride elimination is an extremely common—and sometimes problematic—transformation of metal alkyls. Then again, there are reactions for which β-hydride elimination is desirable, such as the Heck reaction. Structural modifications that strengthen the M–H bond relative to the M–C bond encourage β-hydride elimination; the step can also be driven by trapping of the metal hydride product with a base (the Heck reaction uses this idea).

During the Heck reaction, beta-hydride elimination is driven by a base.

During the Heck reaction, beta-hydride elimination is driven by a base.

On the flip side, stabilization of the M–C bond discourages elimination and encourages its reverse: migratory insertion of olefins into M–H. Previously we saw the example of perfluoroalkyl ligands, which possess exceptionally stable M–C bonds. The fundamental idea here—that electron-withdrawing groups on the alkyl ligand stabilize the M–C bond—is quite general. Hartwig describes an increase in the “ionic character” of the M–C bond upon the addition of electron-withdrawing groups to the alkyl ligand (thereby strengthening the M–C bond, since ionic bonds are stronger than covalent bonds). Bond energies from organic chemistry bear out this idea to an extent; for instance, see the relative BDEs of Me–Me, Me–Ph, and Me–CCH in this reference. I still find this explanation a little “hand-wavy,” but it serves our purpose, I suppose. Read the rest of this entry »