The Organometallic Reader

Dedicated to the teaching and learning of modern organometallic chemistry.

Posts Tagged ‘motivation

Ligand Substitution: General Ideas

leave a comment »

Ligand substitution is the first reaction one typically encounters in an organometallic chemistry course. In general, ligand substitution involves the exchange of one ligand for another, with no change in oxidation state at the metal center. The incoming and outgoing ligands may be L- or X-type, but the charge of the complex changes if the ligand type changes. Keep charge conservation in mind when writing out ligand substitutions.

Charge is conserved in ligand substitution reactions. Four general types of substitution are shown here.

Charge is conserved in ligand substitution reactions. Four general types of substitution are shown here—note the X-for-L and L-for-X types.

How do we know when a ligand substitution reaction is favorable? The thermodynamics of the reaction depend on the relative strength of the two metal-ligand bonds, and the stability of the departing and incoming ligands (or salt sof the ligand, if they’re X type). It’s often useful to think of X-for-X substitutions like acid-base reactions, with the metal and spectator ligands serving as a “glorified proton.” Like acid-base equilibria in organic chemistry, we look to the relative stability of the two charged species (the free ligands) to draw conclusions. Of course, we don’t necessarily need to rely just on primal thermodynamics to drive ligand substitution reactions. Photochemistry, neighboring-group participation, and other tools can facilitate otherwise difficult substitutions.

Ligand substitution is characterized by a continuum of mechanisms bound by associative (A) and dissociative (D) extremes. At the associative extreme, the incoming ligand first forms a bond to the metal, then the departing ligand takes its lone pair and leaves. At the dissociative extreme, the order of events is opposite—the departing ligand leaves, then the incoming ligand comes in. Associative substitution is common for 16-electron complexes (like d8 complexes of Ni, Pd, and Pt), while dissociative substitution is the norm for 18-electron complexes. Then again, reality is often more complicated than these extremes. In some cases, evidence is available for simultaneous dissociation and association, and this mechanism has been given the name interchange (IA or ID).

Over the next few posts, we’ll explore ligand substitution reactions and mechanisms in detail. We’d like to be able to (a) predict whether a mechanism is likely to be associative or dissociative; (b) propose a reasonable mechanism from given experimental data; and (c) describe the results we’d expect given a particular mechanism. Keep these goals in mind as you learn the theoretical and experimental nuts and bolts of substitution reactions.

Written by Michael Evans

May 11, 2012 at 10:06 pm

What is Organometallic Chemistry?

with 3 comments

Let’s begin with a few simple questions: what is organometallic chemistry? What, after studying organometallic chemistry, will we know about the world that we didn’t know before? Why is the subject worth studying? And what kinds of problems is the subject meant to address? The purpose of this post is to give the best answers I currently know of to these questions. The goal of this otherwise content-free post is twofold: (1) to help motivate us as we move forward (that is, to constantly remind us that there is a point to all this!); and (2) to illustrate the kinds of problems we’ll be able to address using concepts from the field. You might be surprised by the spine-chilling power you feel after learning about the behavior of organometallic compounds and reactions!

Put most bluntly, organometallic (OM) chemistry is the study of compounds containing, and reactions involving, metal-carbon bonds. The metal-carbon bond may be transient or temporary, but if one exists during a reaction or in a compound of interest, we’re squarely in the domain of organometallic chemistry. Despite the denotational importance of the M-C bond, bonds between metals and the other common elements of organic chemistry also appear in OM chemistry: metal-nitrogen, metal-oxygen, metal-halogen, and even metal-hydrogen bonds all play a role. Metals cover a vast swath of the periodic table and include the alkali metals (group 1), alkali earth metals (group 2), transition metals (groups 3-12), the main group metals (groups 13-15, “under the stairs”), and the lanthanides and actinides. We will focus most prominently on the behavior of the transition metals, so called because they cover the transition between the electropositive group 2 elements and the more electron-rich main group elements.

Why is the subject worth studying? Well, for me, it mostly comes down to synthetic flexibility. There’s a reason the “organo” comes first in “organometallic chemistry”—our goal is usually the creation of new bonds in organic compounds. The metals tend to just be along for the ride (although their influence, obviously, is essential). And the fact is that you can do things with organometallic chemistry that you cannot do using straight-up organic chemistry. Case in point:

The venerable Suzuki reaction...unthinkable without palladium!

The venerable Suzuki reaction...unthinkable without palladium!

The establishment of the bond between the phenyl rings through a means other than dumb luck seems unthinkable to the organic chemist, but it’s natural for the palladium-equipped metal-organicker. Bromobenzene looks like a potential electrophile at the bromine-bearing carbon, and if you’re familiar with hydroboration you might see phenylboronic acid as a potential nucleophile at the boron-bearing carbon. Catalytic palladium makes it all happen! Organometallic chemistry is full of these mind-bending transformations, and can expand the synthetic toolbox of the organic chemist considerably.

To throw another motive into the mix for the non-specialist (or the synthesis-spurning chemist), organometallic chemistry is full of intriguing stories of scientific inquiry and discovery. Exploring how researchers take a new organometallic reaction from “ooh pretty” to strong predictive power is instructive for anyone interested in “how science works,” in a practical sense. We’ll examine a number of classical experiments in organometallic chemistry, both for their value to the field and their contributions to the general nature of scientific inquiry.

What kinds of problems should we be able to address as we move forward? Here’s a bulleted list of the most commonly encountered types of problems in an organometallic chemistry course:

    • Describe the structure of an organometallic complex…
    • Predict the product of the given reaction conditions…
    • Draw a reasonable mechanism based on evidence…
    • Devise a synthetic route to synthesize a target organometallic compound…
    • Explain the observation(s)…
    • Predict the results of a series of experiments…

    The first four are pretty standard organic-esque problems, but it’s the last two, more general classes that really make organometallic chemistry compelling. Just imagine putting yourself in the shoes of the pioneers and making the same predictions they did!

    There you have it, a short introduction to organometallic chemistry and why it’s worth studying. Of course, we’ll use the remainder of space in the blog to fully describe what organometallic chemistry really is…but it’s helpful to keep these motives in mind as you study. Keep a thirst for predictive power, and it’s hard to go wrong with organometallic chemistry!

    Written by Michael Evans

    December 31, 2011 at 9:44 am


    with one comment

    Welcome! The Organometallic Reader is devoted to the teaching and learning of organometallic chemistry. Quite simply, I believe that there is a better way to teach organometallic chemistry than the approach taken by the average American graduate school. Plus, you don’t need to be a chemistry whiz kid to learn organometallic chemistry! John Anthony said it best:

    You don’t need to be a genius to do chemistry; you just need to be smarter than molecules.

    In many respects, the molecules of organometallic chemistry are unlike any you encounter in general, organic, or inorganic chemistry. Still, they are definitely governed by general principles that come into greater focus with each passing day, and you can learn a lot about the other branches of chemistry by studying organometallics. Few fields cross so many of the traditional “divisions” of chemistry.

    In the coming weeks, we’ll explore the general nature of organometallic chemistry as a whole and its signature molecules, organometallic complexes. We’ll get acquainted with periodic trends of the transition metals, that large but often forgotten chunk of elements stuck in the center of the periodic table. From there, we’ll round out organometallic structure with discussions of the different classes of ligands commonly found in OM complexes. We’ll then move into the elementary mechanistic steps of organometallic chemistry, and finally we’ll put them together as we discuss organometallic reactions. Get ready for a wild ride!

    Written by Michael Evans

    December 30, 2011 at 5:36 pm