The Organometallic Reader

Dedicated to the teaching and learning of modern organometallic chemistry.

Posts Tagged ‘organometallic chemistry

Resources for Organometallic Chemistry

with 2 comments

What resources are available for the interested organometallics student?

What resources are available for the interested organometallics student?

Let’s face it: organometallic chemistry is a somewhat esoteric subject. Unfortunately, this fact makes it difficult to find cheap, current textbooks on the subject, but there are a few used gems for sale on the Internet. Crabtree’s Organometallic Chemistry of the Transition Metals is a short but solid book that’s a good jumping-off point for deeper studies. Spessard and Miessler’s Organometallic Chemistry is a longer but still informative classic. Hartwig’s “biblical” Organotransition Metal Chemistry is a nice reference work, but I wouldn’t start off with this back-breaking tome. If you do, skip around and avoid the vast sections of text describing “what’s known” with little explanation.

For the penny-pinching student or layman, there are several good resources for organometallic chemistry on the Web. Nothing as exhaustive as Reusch’s Virtual Textbook of Organic Chemistry exists for organometallic chemistry, but the base of resources available on the Web is growing. Rob Toreki’s Organometallic HyperTextBook could use a CSS refresh, but contains some nice introductions to different organometallic concepts and reactions. Try the electron-counting quiz!

VIPER is a collection of electronic resources for teaching and learning inorganic chemistry, and includes a nice section on organometallic chemistry featuring laboratory assignments, lecture notes, and classroom activities. Awesome public lecture notes are available from Budzelaar at the University of Manitoba and Shaughnessy at Alabama (Roll Tide?). For practice problems, check out Fu’s OpenCourseWare material from MIT and Shaughnessy’s problem sets.

What did I miss? Feel free to contribute your favorite resources in the comments below. Keep an eye on the right-hand sidebar for a growing collection of online OM chemistry resources.


Written by Michael Evans

January 1, 2012 at 12:33 pm

What is Organometallic Chemistry?

with 3 comments

Let’s begin with a few simple questions: what is organometallic chemistry? What, after studying organometallic chemistry, will we know about the world that we didn’t know before? Why is the subject worth studying? And what kinds of problems is the subject meant to address? The purpose of this post is to give the best answers I currently know of to these questions. The goal of this otherwise content-free post is twofold: (1) to help motivate us as we move forward (that is, to constantly remind us that there is a point to all this!); and (2) to illustrate the kinds of problems we’ll be able to address using concepts from the field. You might be surprised by the spine-chilling power you feel after learning about the behavior of organometallic compounds and reactions!

Put most bluntly, organometallic (OM) chemistry is the study of compounds containing, and reactions involving, metal-carbon bonds. The metal-carbon bond may be transient or temporary, but if one exists during a reaction or in a compound of interest, we’re squarely in the domain of organometallic chemistry. Despite the denotational importance of the M-C bond, bonds between metals and the other common elements of organic chemistry also appear in OM chemistry: metal-nitrogen, metal-oxygen, metal-halogen, and even metal-hydrogen bonds all play a role. Metals cover a vast swath of the periodic table and include the alkali metals (group 1), alkali earth metals (group 2), transition metals (groups 3-12), the main group metals (groups 13-15, “under the stairs”), and the lanthanides and actinides. We will focus most prominently on the behavior of the transition metals, so called because they cover the transition between the electropositive group 2 elements and the more electron-rich main group elements.

Why is the subject worth studying? Well, for me, it mostly comes down to synthetic flexibility. There’s a reason the “organo” comes first in “organometallic chemistry”—our goal is usually the creation of new bonds in organic compounds. The metals tend to just be along for the ride (although their influence, obviously, is essential). And the fact is that you can do things with organometallic chemistry that you cannot do using straight-up organic chemistry. Case in point:

The venerable Suzuki reaction...unthinkable without palladium!

The venerable Suzuki reaction...unthinkable without palladium!

The establishment of the bond between the phenyl rings through a means other than dumb luck seems unthinkable to the organic chemist, but it’s natural for the palladium-equipped metal-organicker. Bromobenzene looks like a potential electrophile at the bromine-bearing carbon, and if you’re familiar with hydroboration you might see phenylboronic acid as a potential nucleophile at the boron-bearing carbon. Catalytic palladium makes it all happen! Organometallic chemistry is full of these mind-bending transformations, and can expand the synthetic toolbox of the organic chemist considerably.

To throw another motive into the mix for the non-specialist (or the synthesis-spurning chemist), organometallic chemistry is full of intriguing stories of scientific inquiry and discovery. Exploring how researchers take a new organometallic reaction from “ooh pretty” to strong predictive power is instructive for anyone interested in “how science works,” in a practical sense. We’ll examine a number of classical experiments in organometallic chemistry, both for their value to the field and their contributions to the general nature of scientific inquiry.

What kinds of problems should we be able to address as we move forward? Here’s a bulleted list of the most commonly encountered types of problems in an organometallic chemistry course:

    • Describe the structure of an organometallic complex…
    • Predict the product of the given reaction conditions…
    • Draw a reasonable mechanism based on evidence…
    • Devise a synthetic route to synthesize a target organometallic compound…
    • Explain the observation(s)…
    • Predict the results of a series of experiments…

    The first four are pretty standard organic-esque problems, but it’s the last two, more general classes that really make organometallic chemistry compelling. Just imagine putting yourself in the shoes of the pioneers and making the same predictions they did!

    There you have it, a short introduction to organometallic chemistry and why it’s worth studying. Of course, we’ll use the remainder of space in the blog to fully describe what organometallic chemistry really is…but it’s helpful to keep these motives in mind as you study. Keep a thirst for predictive power, and it’s hard to go wrong with organometallic chemistry!

    Written by Michael Evans

    December 31, 2011 at 9:44 am