The Organometallic Reader

Dedicated to the teaching and learning of modern organometallic chemistry.

Posts Tagged ‘oxidation state

Epic Ligand Survey: Carbenes

with 2 comments

Epic Ligand Survey: CarbenesIn a previous post, we were introduced to the N-heterocyclic carbenes, a special class of carbene best envisioned as an L-type ligand. In this post, we’ll investigate other classes of carbenes, which are all characterized by a metal-carbon double bond. Fischer carbenes, Shrock carbenes, and vinylidenes are usually actor ligands, but they may be either nucleophilic or electrophilic, depending on the nature of the R groups and metal. In addition, these ligands present some interesting synthetic problems: because free carbenes are quite unstable, ligand substitution doesn’t cut the mustard for metal carbene synthesis. Off we go!

General Properties

Metal carbenes all possess a metal-carbon double bond. That’s kind of a given. What’s interesting for us about this double bond is that there are multiple ways to deconstruct it to determine the metal’s oxidation state and number of d electrons. We could give one pair of electrons to the metal center and one to the ligand, as we did for the NHCs. This procedure nicely illustrates why compounds containing M=C bonds are called “metal carbenoids”—the deconstructed ligand is an L-type carbenoid. Alternatively, we could give both pairs of electrons to the ligand and think of it as an X2-type ligand. The appropriate procedure depends on the ligand’s substituents and the electronic nature of the metal. The figure below summarizes the two deconstruction procedures.

The proper method of deconstruction depends on the electronic nature of the ligand and metal.

The proper method of deconstruction depends on the electronic nature of the ligand and metal.

Read the rest of this entry »

Periodic Trends of the Transition Metals

with 3 comments

Periodic trends play a huge role in organic chemistry. Regular changes in electronegativity, atomic size, ionization energy, and other variables across the periodic table allow us to make systematic predictions about the behavior of similar compounds. Of course, the same is true for organometallic complexes! With a firm grip on the periodic trends of the transition metals, we can begin to make comparisons between complexes we’re familiar with and those we’ve never seen before. Periodic trends essentially provide an exponential increase in predictive power. In this post, we’ll hit on the major periodic trends of the transition metals and discuss a few examples for which these trends can be handy.

Before beginning, a couple of caveats are in order. First of all, many of the trends across the transition series are not perfectly regular. Hartwig wisely advises that one should consider the transition series in blocks instead of as a whole when considering periodic trends. For instance, general increases in a quantity may be punctuated by sudden decreases; in such a case, we may say that the quantity increases generally, but definite conclusions are only possible when the metals under comparison are close to one another in the periodic table (and we need to be careful about unexpected jumps). Secondly, periodic trends are significantly affected by the identity of ligands and the oxidation state of the metal center, so comparisons need to be appropriately controlled. Using periodic trends to compare a Pd(II) complex and a Ru(III) complex is largely an exercise in futility, but comparing Pt(II) and Pd(II) complexes with similar ligand sets is reasonable. Keep these ideas in mind to avoid spinning your wheels unnecessarily! Alright, let’s dive in… Read the rest of this entry »

Written by Michael Evans

January 9, 2012 at 12:56 am

Simplifying the Organometallic Complex (Part 3)

with 4 comments

So far, we’ve seen how deconstruction can reveal useful “bookkeeping” properties of organometallic complexes: number of electrons donated by ligands, coordination number, oxidation state, and d electron count (to name a few). Now, let’s bring everything together and discuss total electron count, the sum of non-bonding and bonding electrons associated with the metal center. Like oxidation state, total electron count can reveal the likely reactivity of OM complexes—in fact, it is often more powerful than oxidation state for making predictions. We’ll see that there is a definite norm for total electron count, and when a complex deviates from that norm, reactions are likely to happen.

Let’s begin with yet another new complex. This molecule features the common and important cyclopentadienyl and carbon monoxide ligands, along with an X-type ethyl ligand.

What's the total electron count of this d6, Fe(II) complex?

What is the total electron count of this Fe(II) complex?

The Cp or cyclopentadienyl ligand is a polydentate, six-electron L2X ligand. The two pi bonds of the free anion are dative, L-type ligands, which we’ll see again in a future post on ligands bound through pi bonds. Think of the electrons of the pi bond as the source of a dative bond to the metal. Since both electrons come from the ligand, the pi bonds are L-type binders. The anionic carbon in Cp is a fairly standard, anionic X-type binder. The carbon monoxide ligands are interesting examples of two-electron L-type ligands—notice that the free ligands are neutral, so these are considered L-type! Carbon monoxide is an intriguing ligand that can teach us a great deal about metal-ligand bonding in OM complexes…but more on that later. Read the rest of this entry »

Written by Michael Evans

January 6, 2012 at 1:40 pm

Simplifying the Organometallic Complex (Part 2)

with 2 comments

Now it’s time to turn our attention to the metal center, and focus on what the deconstruction process can tell us about the nature of the metal in organometallic complexes. We’ll hold off on a description of periodic trends of the transition series, but now is a good time to introduce the general characteristics of the transition metals. Check out groups 3-12 in the table below.

The transition metals are colored dark blue in this table.

The transition metals are colored dark blue in this table.

The transition metals occupy the d-block of the periodic table, meaning that, as we move from left to right across the transition series, electrons are added to the d atomic orbitals. Just like organic elements, the transition metals form bonds using only their valence electrons. But when working with the transition metals, we need to concern ourselves only with the d atomic orbitals, as none of the other valence subshells contain any electrons. Although the periodic table may lead you to believe that the transition metals possess filled s subshells, we imagine metals in organometallic complexes as possessing valence electrons in d orbitals only! The reason for this is somewhat complicated, but has to do with the partial positive charge of complexed metals. Neutral transition metal atoms do, in fact, possess filled s subshells. Why, then, is it important to remember that the valence electrons of complexed metal centers are all d electrons? We will see that the number of d electrons possessed by a complexed metal is in many ways a useful concept. If you find that your counts are off by two, this common mistake is probably the culprit! Read the rest of this entry »

Written by Michael Evans

January 4, 2012 at 3:41 pm