The Organometallic Reader

Dedicated to the teaching and learning of modern organometallic chemistry.

Posts Tagged ‘periodic trends

Migratory Insertion: Introduction & CO Insertions

with 6 comments

We’ve seen that the metal-ligand bond is generally polarized toward the ligand, making it nucleophilic. When a nucleophilic, X-type ligand is positioned cis to an unsaturated ligand in an organometallic complex, an interesting process that looks a bit like nucleophilic addition can occur.

Migratory insertion into a metal-carbon bond.

Migratory insertion into a metal-carbon bond.

On the whole, the unsaturated ligand appears to insert itself into the M–X bond; hence, the process is called migratory insertion. An open coordination site shows up in the complex, and is typically filled by an added ligand. The open site may appear where the unsaturated ligand was or where the X-type ligand was, depending on which group actually moved (see below). There is no change in oxidation state at the metal (unless the ligand is an alkylidene/alkylidyne), but the total electron count of the complex decreases by two during the actual insertion event—notice in the above example that the complex goes from 18 to 16 total electrons after insertion. A dative ligand comes in to fill that empty coordination site, but stay flexible here: L could be a totally different ligand or a Lewis base in the X-type ligand. L can even be the carbonyl oxygen itself!

X can migrate onto unsaturated ligand Y, or Y onto X. The former is more common for CO insertions.

X can migrate onto unsaturated ligand Y, or Y onto X. The former is more common for CO insertions.

We can distinguish between two types of insertions, which differ in the number of atoms in the unsaturated ligand involved in the step. Insertions of CO, carbenes, and other η1 unsaturated ligands are called 1,1-insertions because the X-type ligand moves from its current location on the metal to one spot over, on the atom bound to the metal. η2 ligands like alkenes and alkynes can also participate in migratory insertion; these reactions are called 1,2-insertions because the X-type ligand slides two atoms over, from the metal to the distal atom of the unsaturated ligand.

1,2-insertion of an alkene and hydride. In some cases, an agostic interaction has been observed in the unsaturated intermediate.

1,2-insertion of an alkene and hydride. In some cases, an agostic interaction has been observed in the unsaturated intermediate.

This is really starting to look like the addition of M and X across a π bond! However, we should take care to distinguish this completely intramolecular process from the attack of a nucleophile or electrophile on a coordinated π system, which is a different beast altogether. Confusingly, chemists often jumble up all of these processes using words like “hydrometalation,” “carbometalation,” “aminometalation,” etc. Another case of big words being used to obscure ignorance! We’ll look at nucleophilic and electrophilic attack on coordinated ligands in separate posts.

Read the rest of this entry »

Written by Michael Evans

November 3, 2012 at 11:00 pm

Epic Ligand Survey: Carbon Monoxide

with 12 comments

Epic Ligand Survey: Carbon MonoxideAs a young, growing field, organometallic chemistry may be taught in many ways. Some professors (e.g., Shaugnessy) spend a significant chunk of time discussing ligands, while others forego ligand surveys (e.g., White) to dive right in to reactions and mechanisms. I like the ligand survey approach because it lays out many of the general concerns associated with certain ligand sets before organometallic intermediates pop up. With the general concerns in hand, it becomes easier to generate explanations for certain observed effects on reactions that depend on ligands. Instead of generalizing from complex, specific examples in the context of reaction mechanisms, we’ll look at general trends first and apply these to reaction intermediates and mechanisms later. This post kicks off our epic ligand survey with carbon monoxide, a simple but fascinating ligand.

General Properties

CO is a dative, L-type ligand that does not affect the oxidation state of the metal center upon binding, but does increase the total electron count by two units. We’ve recently seen that there are really two bonding interactions at play in the carbonyl ligand: a ligand-to-metal ndσ interaction and a metal-to-ligand dπ → π* interaction. The latter interaction is called backbonding, because the metal donates electron density back to the ligand. To remind myself of the existence of backbonding, I like to use the right-hand resonance structure whenever possible; however, it’s important to remember to treat CO as an L-type ligand no matter what resonance form is drawn.

The right-hand resonance structure represents the two bonding interactions in M=C=O.

Orbital interactions in M=C=O.

CO is a fair σ-donor (or σ-base) and a good π-acceptor (or π-acid). The properties of ligated CO depend profoundly upon the identity of the metal center. More specifically, the electronic properties of the metal center dictate the importance of backbonding in metal carbonyl complexes. Most bluntly, more electron-rich metal centers are better at backbonding to CO. Why is it important to ascertain the strength of backbonding? I’ll leave that question hanging for the moment, but we’ll have an answer very soon. Read on! Read the rest of this entry »

Periodic Trends of the Transition Metals

with 3 comments

Periodic trends play a huge role in organic chemistry. Regular changes in electronegativity, atomic size, ionization energy, and other variables across the periodic table allow us to make systematic predictions about the behavior of similar compounds. Of course, the same is true for organometallic complexes! With a firm grip on the periodic trends of the transition metals, we can begin to make comparisons between complexes we’re familiar with and those we’ve never seen before. Periodic trends essentially provide an exponential increase in predictive power. In this post, we’ll hit on the major periodic trends of the transition metals and discuss a few examples for which these trends can be handy.

Before beginning, a couple of caveats are in order. First of all, many of the trends across the transition series are not perfectly regular. Hartwig wisely advises that one should consider the transition series in blocks instead of as a whole when considering periodic trends. For instance, general increases in a quantity may be punctuated by sudden decreases; in such a case, we may say that the quantity increases generally, but definite conclusions are only possible when the metals under comparison are close to one another in the periodic table (and we need to be careful about unexpected jumps). Secondly, periodic trends are significantly affected by the identity of ligands and the oxidation state of the metal center, so comparisons need to be appropriately controlled. Using periodic trends to compare a Pd(II) complex and a Ru(III) complex is largely an exercise in futility, but comparing Pt(II) and Pd(II) complexes with similar ligand sets is reasonable. Keep these ideas in mind to avoid spinning your wheels unnecessarily! Alright, let’s dive in… Read the rest of this entry »

Written by Michael Evans

January 9, 2012 at 12:56 am