The Organometallic Reader

Dedicated to the teaching and learning of modern organometallic chemistry.

Posts Tagged ‘sigma complexes

Oxidative Addition of Non-polar Reagents

with 7 comments

How important are oxidative additions of non-polar reagents? Very. The addition of dihydrogen (H2) is an important step in catalytic hydrogenation reactions. Organometallic C–H activations depend on oxidative additions of C–H bonds. In a fundamental sense, oxidative additions of non-polar organic compounds are commonly used to establish critical metal-carbon bonds. Non-polar oxidative additions get the ball rolling in all kinds of catalytic organometallic reactions. In this post, we’ll examine the mechanisms and important trends associated with non-polar oxidative additions.

Oxidative Additions of H2

Electron-rich metal centers with open coordination sites (or the ability to form them) undergo oxidative additions with dihydrogen gas. The actual addition step is concerted, as we might expect from the dull H2 molecule! However, before the addition step, some interesting gymnastics are going on. The status of the σ complex that forms prior to H–H insertion is an open question—for some reactions it is a transition state, others a discrete intermediate. In either case, the two new hydride ligands end up cis to one another. Subsequent isomerization may occur to give a trans dihydride.

Oxidative addition of dihydrogen to Vaska's complex. Note the cis arrangement of the hydride ligands.

Oxidative addition of dihydrogen to Vaska’s complex. Note the cis arrangement of the hydride ligands.

There’s more to this little reaction than meets the eye. For starters, either pair of trans ligands in the starting complex (L/L or Cl/CO) may “fold back” to form the final octahedral complex. As in associative ligand substitution, the transition state for folding back is basically trigonal bipyramidal. As we saw before, π-acidic ligands love the equatorial sites of the TBP geometry, which are rich in electrons capable of π bonding. As a consequence, π-acidic ligands get folded back preferentially, and tend to end up cis to their trans partners in the starting complex.

Dihydrogen may approach along two distinct trajectories. Placing π-acidic ligands in the equatorial plane of the TBP transition state is favored.

Dihydrogen may approach along two distinct trajectories. Placing π-acidic ligands in the equatorial plane of the TBP transition state is favored.

Read the rest of this entry »


Written by Michael Evans

July 4, 2012 at 4:09 pm

What is an Open Coordination Site?

with 4 comments

The concept of coordinative unsaturation can be confusing for the student of organometallic chemistry, but recognizing open coordination sites in OM complexes is a critical skill. Why? Let’s begin with a famous example of coordinative unsaturation from organic chemistry.

An analogy from organic chemistry. The reactivity of the carbene flows from its open coordination site.

An analogy from organic chemistry. The reactivity of the carbene flows from its open coordination site.

Carbenes are both nucleophilic and electrophilic, but the essence of their electrophilicity comes from the fact that they don’t have their fair share of electrons (8). They have not been saturated with electrons—carbenes want more! To achieve saturation, carbenes may inherit a pair of electrons from a σ bond (σ-bond insertion), π bond (cyclopropanation), or lone pair (ylide formation). Notice that, simply by spotting coordinative unsaturation, we’ve been able to fully describe the carbene’s reactivity! We can do the same with organometallic complexes—open coordination sites suggest specific reactivity patterns. That’s why understanding coordinative unsaturation and recognizing its telltale sign (the open coordination site) are essential skills for the organometallic chemist. Read the rest of this entry »

Epic Ligand Survey: σ Complexes

with 2 comments

Epic Ligand Survey: Sigma ComplexesIn this post, we’ll investigate ligands that, shockingly enough, bind through their σ electrons in an L-type fashion. This binding mode depends as much on the metal center as it does on the ligand itself—to see why, we need only recognize that σ complexes look like intermediates in concerted oxidative additions. With a slight reorganization of electrons and geometry, an L-type σ ligand can become two X-type ligands. Why, then, are σ complexes stable? How can we control the ratio of σ complex to X2 complex in a given situation? How does complexation of a σ bond change the ligand’s properties? We’ll address these questions and more in this post.

General Properties

The first thing to realize about σ complexes is that they are highly sensitive to steric bulk. Any old σ bond won’t do; hydrogen at one end of the binding bond or the other (or both) is necessary. The best studied σ complexes involve dihydrogen (H2), so let’s start there.

Mildly backbonding metals may bind dihydrogen “side on.” Like side-on binding in π complexes, there are two important orbital interactions at play here: σH–Hdσ and dπ→σ*H–H. Dihydrogen complexes can “tautomerize” to (H)2 isomers through oxidative addition of the H–H bond to the metal.

Orbital interactions and L-X2 equilibrium in σ complexes.

Orbital interactions and L-X2 equilibrium in σ complexes.

H2 binding in an L-type fashion massively acidifies the ligand—changes in pKa of over thirty units are known! Analogous acidifications of X–H bonds, which we touched on in a previous post, rarely exhibit ΔpKa > 5. What gives? What’s causing the different behavior of X–H and H–H ligands? The key is to consider the conjugate base of the ligand—in particular, how much it’s stabilized by a metal center relative to the corresponding free anion. The principle here is analogous to the famous dictum of organic chemistry: consider charged species when making acid/base comparisons. Stabilization of the unhindered anion H by a metal is much greater than stabilization of larger, more electronegative anions like HO– and NH2– by a metal. As a result, it’s more favorable to remove a proton from metal-complexed H2 than from larger, more electronegative X–H ligands. Read the rest of this entry »

Written by Michael Evans

April 10, 2012 at 10:58 am