The Organometallic Reader

Dedicated to the teaching and learning of modern organometallic chemistry.

Posts Tagged ‘backbonding

β-Elimination Reactions

with 7 comments

In organic chemistry class, one learns that elimination reactions involve the cleavage of a σ bond and formation of a π bond. A nucleophilic pair of electrons (either from another bond or a lone pair) heads into a new π bond as a leaving group departs. This process is called β-elimination because the bond β to the nucleophilic pair of electrons breaks. Transition metal complexes can participate in their own version of β-elimination, and metal alkyl complexes famously do so. Almost by definition, metal alkyls contain a nucleophilic bond—the M–C bond! This bond can be so polarized toward carbon, in fact, that it can promote the elimination of some of the world’s worst leaving groups, like –H and –CH3. Unlike the organic case, however, the leaving group is not lost completely in organometallic β-eliminations. As the metal donates electrons, it receives electrons from the departing leaving group. When the reaction is complete, the metal has picked up a new π-bound ligand and exchanged one X-type ligand for another.

Comparing organic and organometallic β-eliminations. A nucleophilic bond or lone pair promotes loss or migration of a leaving group.

Comparing organic and organometallic β-eliminations. A nucleophilic bond or lone pair promotes loss or migration of a leaving group.

In this post, we’ll flesh out the mechanism of β-elimination reactions by looking at the conditions required for their occurrence and their reactivity trends. Many of the trends associated with β-eliminations are the opposite of analogous trends in 1,2-insertion reactions. A future post will address other types of elimination reactions.

β-Hydride Elimination

The most famous and ubiquitous type of β-elimination is β-hydride elimination, which involves the formation of a π bond and an M–H bond. Metal alkyls that contain β-hydrogens experience rapid elimination of these hydrogens, provided a few other conditions are met. Read the rest of this entry »

Advertisements

The trans/cis Effects & Influences

with 2 comments

The trans effect is an ancient but venerable observation. First noted by Chernyaev in 1926, the trans effect and its conceptual siblings (the trans influence, cis influence, and cis effect) are easy enough to comprehend. That is, it’s simple enough to know what they are. To understand why they are, on the other hand, is much more difficult. I call ideas like this—which, by the way, pop up often in organometallic chemistry—”icebergs.” Their definitions are simple and easy to see; their explanations can be complex.

Definitions & Examples

Let’s begin with definitions: what is the trans effect? There’s some confusion on this point, so we need to be careful. The trans effect proper, which is often called the kinetic trans effect, refers to the observation that certain ligands increase the rate of ligand substitution when positioned trans to the departing ligand. The key word in that last sentence is “rate”—the trans effect proper is a kinetic effect. The trans influence refers to the impact of a ligand on the length of the bond trans to it in the ground state of a complex. The key phrase there is “ground state”—this is a thermodynamic effect, so it’s sometimes called the thermodynamic trans effect. Adding to the insanity, cis effects and cis influences have also been observed. Evidently, ligands may also influence the kinetics or thermodynamics of their cis neighbors. All of these phenomena are independent of the metal center, but do depend profoundly on the geometry of the metal (more on that shortly).

Kinetic trans and cis effects are shown in the figure below. In both cases, we see that X1 exhibits a stronger effect than X2. The geometries shown are those for which each effect is most commonly observed. The metals and oxidation states shown are prototypical.

The kinetic trans and cis effects in action. X1 is the stronger (trans/cis)-effect ligand in these examples.

The kinetic trans and cis effects in action. X1 is the stronger (trans/cis)-effect ligand in these examples.

Read the rest of this entry »

Epic Ligand Survey: σ Complexes

with 2 comments

Epic Ligand Survey: Sigma ComplexesIn this post, we’ll investigate ligands that, shockingly enough, bind through their σ electrons in an L-type fashion. This binding mode depends as much on the metal center as it does on the ligand itself—to see why, we need only recognize that σ complexes look like intermediates in concerted oxidative additions. With a slight reorganization of electrons and geometry, an L-type σ ligand can become two X-type ligands. Why, then, are σ complexes stable? How can we control the ratio of σ complex to X2 complex in a given situation? How does complexation of a σ bond change the ligand’s properties? We’ll address these questions and more in this post.

General Properties

The first thing to realize about σ complexes is that they are highly sensitive to steric bulk. Any old σ bond won’t do; hydrogen at one end of the binding bond or the other (or both) is necessary. The best studied σ complexes involve dihydrogen (H2), so let’s start there.

Mildly backbonding metals may bind dihydrogen “side on.” Like side-on binding in π complexes, there are two important orbital interactions at play here: σH–Hdσ and dπ→σ*H–H. Dihydrogen complexes can “tautomerize” to (H)2 isomers through oxidative addition of the H–H bond to the metal.

Orbital interactions and L-X2 equilibrium in σ complexes.

Orbital interactions and L-X2 equilibrium in σ complexes.

H2 binding in an L-type fashion massively acidifies the ligand—changes in pKa of over thirty units are known! Analogous acidifications of X–H bonds, which we touched on in a previous post, rarely exhibit ΔpKa > 5. What gives? What’s causing the different behavior of X–H and H–H ligands? The key is to consider the conjugate base of the ligand—in particular, how much it’s stabilized by a metal center relative to the corresponding free anion. The principle here is analogous to the famous dictum of organic chemistry: consider charged species when making acid/base comparisons. Stabilization of the unhindered anion H by a metal is much greater than stabilization of larger, more electronegative anions like HO– and NH2– by a metal. As a result, it’s more favorable to remove a proton from metal-complexed H2 than from larger, more electronegative X–H ligands. Read the rest of this entry »

Written by Michael Evans

April 10, 2012 at 10:58 am

Epic Ligand Survey: Carbenes

with 2 comments

Epic Ligand Survey: CarbenesIn a previous post, we were introduced to the N-heterocyclic carbenes, a special class of carbene best envisioned as an L-type ligand. In this post, we’ll investigate other classes of carbenes, which are all characterized by a metal-carbon double bond. Fischer carbenes, Shrock carbenes, and vinylidenes are usually actor ligands, but they may be either nucleophilic or electrophilic, depending on the nature of the R groups and metal. In addition, these ligands present some interesting synthetic problems: because free carbenes are quite unstable, ligand substitution doesn’t cut the mustard for metal carbene synthesis. Off we go!

General Properties

Metal carbenes all possess a metal-carbon double bond. That’s kind of a given. What’s interesting for us about this double bond is that there are multiple ways to deconstruct it to determine the metal’s oxidation state and number of d electrons. We could give one pair of electrons to the metal center and one to the ligand, as we did for the NHCs. This procedure nicely illustrates why compounds containing M=C bonds are called “metal carbenoids”—the deconstructed ligand is an L-type carbenoid. Alternatively, we could give both pairs of electrons to the ligand and think of it as an X2-type ligand. The appropriate procedure depends on the ligand’s substituents and the electronic nature of the metal. The figure below summarizes the two deconstruction procedures.

The proper method of deconstruction depends on the electronic nature of the ligand and metal.

The proper method of deconstruction depends on the electronic nature of the ligand and metal.

Read the rest of this entry »

Epic Ligand Survey: π Systems (Part 1)

with 3 comments

Epic Ligand Survey: Pi SystemsWith this post, we finally reach our first class of dative actor ligands, π systems. In contrast to the spectator L-type ligands we’ve seen so far, π systems most often play an important role in the reactivity of the OM complexes of which they are a part (since they act in reactions, they’re called “actors”). π Systems do useful chemistry, not just with the metal center, but also with other ligands and external reagents. Thus, in addition to thinking about how π systems affect the steric and electronic properties of the metal center, we need to start considering the metal’s effect on the ligand and how we might expect the ligand to behave as an active participant in reactions. To the extent that structure determines reactivity—a commonly repeated, and extremely powerful maxim in organic chemistry—we can think about possibilities for chemical change without knowing the elementary steps of organometallic chemistry in detail yet. And we’re off!

General Properties

The π bonding orbitals of alkenes, alkynes, carbonyls, and other unsaturated compounds may overlap with dσ orbitals on metal centers. This is the classic ligand HOMO → metal LUMO interaction that we’ve beaten into the ground over the last few posts. Because of this electron donation from the π system to the metal center, coordinated π systems often act electrophilic, even if the starting alkene was nucleophilic (the Wacker oxidation is a classic example; water attacks a palladium-coordinated alkene). The  π → dσ orbital interaction is central to the structure and reactivity of π-system complexes.

Then again, a theme of the last three posts has been the importance of orbital interactions with the opposite sense: metal HOMO → ligand LUMO. Like CO, phosphines, and NHCs, π systems are often subject to important backbonding interactions. We’ll focus on alkenes here, but these same ideas apply to carbonyls, alkynes, and other unsaturated ligands bound through their π clouds. For alkene ligands, the relative importance of “normal” bonding and backbonding is nicely captured by the relative importance of the two resonance structures in the figure below.

Resonance forms of alkene ligands.

Resonance forms of alkene ligands.

Read the rest of this entry »

Epic Ligand Survey: N-heterocyclic Carbenes

with 3 comments

Epic Ligand Survey: N-heterocyclic CarbenesOur romp through the common dative ligands continues with the N-heterocyclic carbenes (NHCs). Although we’ll tackle carbenes in general in another post, NHCs deserve their own nod due to their unique structure, properties, and steric tunability. Unlike most metal carbenes, NHCs are typically unreactive when coordinated to a metal (with some exceptions). Like phosphines, they are commonly used to modulate the steric and electronic properties of metal complexes. In fact, the similarities between NHCs and phosphines are notable. Overall, few ligands are as effective as NHCs at ramping up the electron density on a metal center while remaining innocent.

General Properties

Free NHCs contain carbon in the rarely encountered +2 oxidation state. In general, we can classify carbenes according to the nature of the two non-bonding electrons—if they are spin paired (one up and one down), the carbene is called a singlet; if their spins are parallel, we call the carbene a triplet. Whether a carbene is in the singlet or triplet state depends primarily on the difference in energy between its frontier orbitals—when the FMOs are close in energy, single occupation of each FMO (the triplet state) is likely. As the energy difference increases, the singlet state becomes more likely because the higher-energy FMO is less likely to be occupied.

FMO pictures for singlet and triplet carbenes.

FMO pictures for singlet and triplet carbenes.

How do we tinker with the FMO energies, you ask? The nature of the R groups is key. When R is electron-donating, the energy of the LUMO is raised through a fairly straightforward n → 2pz orbital interaction. An analogous interaction is responsible for the stability of carbocations adjacent to lone-pair-bearing heteroatoms (such as the oxocarbenium ion). Thanks to this orbital interaction, electron-donating groups stabilize the singlet state…and NHCs are no exception! The figure below depicts only one of two possible n → 2pz interactions in free N-heterocyclic carbenes. The LUMOs of free NHCs are quite high in energy, relative to other kinds of carbenes. Read the rest of this entry »

Epic Ligand Survey: Phosphines

with 4 comments

Epic Ligand Survey: PhosphinesThe epic ligand survey continues with tertiary phosphines, PR3. Phosphines are most notable for their remarkable electronic and steric tunability and their “innocence”—they tend to avoid participating directly in organometallic reactions, but have the ability to profoundly modulate the electronic properties of the metal center to which they’re bound. Furthermore, because the energy barrier to umbrella flipping of phosphines is quite high, “chiral-at-phosphorus” ligands can be isolated in enantioenriched form and introduced to metal centers, bringing asymmetry just about as close to the metal as it can get in chiral complexes. Phosphorus NMR is a technique that Just Works (thanks, nature). Soft phosphines match up very well with the soft low-valent transition metals. Electron-poor phosphines are even good π-acids! Need I say more? Let’s explore this fascinating, ubiquitous class of ligands in more detail.

General Properties

Like CO, phosphines are dative, L-type ligands that formally contribute two electrons to the metal center. Unlike CO, most phosphines are not small enough to form more than four bonds to a single metal center (and for large R, the number is even smaller). Steric hindrance becomes a problem when five or more PR3 ligands try to make their way into the space around the metal. An interesting consequence of this fact is that many phosphine-containing complexes do not possess 18 valence electrons. Examples include Pt(PCy3)2, Pd[P(t-Bu)3]2, and [Rh(PPh3)3]+. Doesn’t that just drive you crazy? It drives the complexes crazy as well—and most of these coordinatively unsaturated compounds are wonderful catalysts.

Bridging by phosphines is extremely rare, but ligands containing multiple phosphine donors that bind in an Ln (n > 1) fashion to a single metal center are all over the place. These ligands are called chelating or polydentate to indicate that they latch on to metal centers through multiple binding sites. For entropic reasons, chelating ligands bind to a single metal center at multiple points if possible, instead of attaching to two different metal centers (the aptly named chelate effect). An important characteristic of chelating phosphines is bite angle, defined as the predominant P–M–P angle in known complexes of the ligand. We’ll get into the interesting effects of bite angle later, but for now, we might imagine how “unhappy” a ligand with a preferred bite angle of 120° would be in the square planar geometry. It would much rather prefer to be part of a trigonal bipyramidal complex, for instance.
Read the rest of this entry »